Creativity : 10 Cutest Cars & Customization Rules

Unfortunately, only a few cars made it to the roads and many of them just remained as much adored cars on Techno-Exhibitions.

Because customization of Cars has many laws associated with it and that varies from country to country. You can read some of the common illegal alterations following this gallery. So when you try customizing your car, always check your state’s law.

In India, you check the following list before you customize.

  • First, get the modification plans approved by the original car maker
  • Modify the car according to the approved plan
  • Get the modified car approved by the original car maker
  • If approved, the owner has to get the car certified at one of three government-approved certifying agencies
  • Once cleared by them, an RTO certificate will enable the owner to drive around town without being pulled up

However, these cars will tempt you at least to go for a ride. 🙂 Which one is your favourite?

10 common illegal customizations

  1. Window tinting

    Dark window tinting is one of the most common illegal alterations made to cars. Every state has different laws regarding window tinting and regulations, including light transmittance and location of tinting. Some states are stricter about tinting the driver’s side window and the windshield. For the most part, a light tint is the best way to go and will keep you out of trouble with law enforcement.

  2. License plate frames

    Customizing license plates and the frames that keep them in place is very popular. It may seem harmless to have a customized frame that advertises a dealership or your favorite sports team, but you can actually get pulled over and ticketed if the frame covers up the state name or numbers in any way. Tinted and reflective-plate covers are also illegal in many states.

  3. Exhaust

    Adding a performance exhaust to your vehicle can make it more powerful, faster, and louder than before. Drivers who install a new exhaust system may have a noisier and meaner sounding vehicle, but you’ll also run the risk of being ticketed if it’s too loud and causes any noise complaints.

  4. HID headlamps

    Drivers who want a customized look for their car might be tempted to get a HID headlamps kit to install, but this popular alteration is illegal in all 50 states. The National Highway Traffic Safety Administration says that no HID headlamps meet the federal photometric standards, so if you install these you may end up with a pricey ticket.

  5. Undercarriage lighting

    Undercarriage lighting is a popular, but often illegal alteration made to cars. Adding bright neon or LED lights may be illegal in your state, especially if it interferes with the front and rear lighting. Some states have restricted certain colors and color combinations that might cause confusion or distractions on the road.

  1. Lifts

    Lifting the suspension or frame and body of your vehicle can drastically change the way your car looks and drives. As popular as this alteration is, your state may have a limit on how high you can go. Some states set their height restrictions based on maximum headlight and taillight heights and others measure by maximum bumper heights. Depending on the state you live in or drive through, you could be ticketed for an excessive lift.

  2. Muffler delete

    Drivers who want to increase the horse power and noise level of their vehicle may consider installing muffler delete pipes. But it’s important to know that every state has different laws relating to muffler delete alterations, but for the most part, it’s illegal. Most states require all vehicles have a working muffler to prevent excessively loud or unusual noises, but adding a muffler delete or similar device to your vehicle is illegal.

  3. Studded tires

    Many drivers install studded tires to get better traction on slippery roads during the winter season, but these tires can also destroy pavement. Even though studded tires have been approved by the federal government and received the DOT rating, some states do not allow them on their roads or only at certain times of the year.

  4. Off-road lamps

    High-intensity off-road lamps are very bright and very illegal in some states. These 100-watt (or more) lights are often attached to the grille of trucks or mounted on the roof of vehicles. Off-road lamps might help you find your way through the dark wilderness, but they are completely unnecessary for everyday driving. The range, intensity, and light patterns of these lamps are extremely distracting on the road and can cause danger to oncoming traffic.

  5. Cold air intake

    This is a common alteration made to mostly muscle cars and four-cylinder import vehicles. Drivers install cold air intake systems for various reasons, but one of the most common is to produce more power from the engine. But this increase in power can result in an increase in fuel consumption and emissions. Your car may seem like it’s running better, but if you’re exceeding the legal emissions limits, you could be in trouble with the law.


Credits : Criminal Justice Degrees guide

Know : List of Countries using Nuclear Energy

Nuclear_power_station

Nuclear_label

Nuclear power stations operate in 31 countries. Of the thirty countries in which nuclear power plants operate, only France, Belgium, Hungary and Slovakia use them as the primary source of electricity, although many other countries have a significant nuclear power generation capacity. According to the World Nuclear Association, a nuclear power advocacy group, over 45 countries are giving “serious consideration” to introducing a nuclear power capability, with Iran, the United Arab Emirates, Turkey,Vietnam, Belarus, and Jordan at the forefront. China, South Korea and India are pursuing ambitious expansions of their nuclear power capacities

As of June 2011, Germany and Switzerland are phasing-out nuclear power which will be replaced mostly by fossil fuels, and a smaller part renewable energy.

Rank Country Capacity (MW)
(2014)
Nuclear share of
electricity production, 2013
1 United States United States 99,081 19.4%
2 France France 63,130 73.3%
3 Japan Japan 42,388 1.7%
4 Russia Russia 23,643 17.5%
5 South Korea South Korea 20,721 27.6%
6 China China 17,978 2.1%
7 Canada Canada 13,538 16.0%
8 Ukraine Ukraine 13,107 43.6%
9 Germany Germany 12,068 15.4%
10 Sweden Sweden 9,474 42.7%
11 United Kingdom United Kingdom 9,243 18.3%
12 Spain Spain 7,121 19.7%
13 Belgium Belgium 5,927 52.1%
14 India India 5,308 3.5%
15 Taiwan Taiwan 5,032 19.1%
16 Czech Republic Czech Republic 3,884 35.9%
17 Switzerland Switzerland 3,308 36.4%
18 Finland Finland 2,752 33.3%
19 Bulgaria Bulgaria 1,906 30.7%
20 Hungary Hungary 1,889 50.7%
21 Brazil Brazil 1,884 2.8%
22 South Africa South Africa 1,860 5.7%
23 Slovakia Slovakia 1,815 51.7%
24 Argentina Argentina 1,627 4.4%
25 Mexico Mexico 1,570 4.6%
26 Romania Romania 1,300 19.8%
27 Iran Iran 915 1.5%
28 Pakistan Pakistan 690 4.4%
29 Slovenia Slovenia 688 33.6%
30 Netherlands Netherlands 482 2.8%
31 Armenia Armenia 375 29.2%
World 374,704

Courtesy & Source: “Nuclear power station” by Ichabod Paleogene, Krzysztof Kori. Licensed under CC BY 3.0 via Wikimedia Commons

Documentary : Urbanized

Urbanized is a feature-length documentary about the design of cities, which looks at the issues and strategies behind urban design and features some of the world’s foremost architects, planners, policy makers, builders, and thinkers.

Know : Genetically Modified Foods : 20 Questions : WHO’s Answers

Must Know: Find the answers to these 20 questions on Genetically Modified Foods by the World Health Organization, (below the video)

1. What are genetically modified (GM) organisms and GM foods?
2. Why are GM foods produced?
3. Are GM foods assessed differently from traditional foods?
4. How are the potential risks to human health determined?
5. What are the main issues of concern for human health?
6. How is a risk assessment for the environment performed?
7. What are the issues of concern for the environment?
8. Are GM foods safe?
9. How are GM foods regulated nationally?
10. What kind of GM foods are on the market internationally?
11. What happens when GM foods are traded internationally?
12. Have GM products on the international market passed a risk assessment?
13. Why has there been concern about GM foods among some politicians, public interest groups and consumers, especially in Europe?
14. How has this concern affected the marketing of GM foods in the European Union?
15. What is the state of public debate on GM foods in other regions of the world?
16. Are people’s reactions related to the different attitudes to food in various regions of the world?
17. Are there implications for the rights of farmers to own their crops?
18. Why are certain groups concerned about the growing influence of the chemical industry on agriculture?
19. What further developments can be expected in the area of GMOs?
20. What is WHO doing to improve the evaluation of GM foods?

Note: This documentary is not by WHO, it is from another source.

These questions and answers have been prepared by WHO in response to questions and concerns by a number of WHO Member State Governments with regard to the nature and safety of genetically modified food.

Q1. What are genetically modified (GM) organisms and GM foods?

Genetically modified organisms (GMOs) can be defined as organisms in which the genetic material (DNA) has been altered in a way that does not occur naturally. The technology is often called “modern biotechnology” or “gene technology”, sometimes also “recombinant DNA technology” or “genetic engineering”. It allows selected individual genes to be transferred from one organism into another, also between non-related species.

Such methods are used to create GM plants – which are then used to grow GM food crops.

Q2. Why are GM foods produced?

GM foods are developed – and marketed – because there is some perceived advantage either to the producer or consumer of these foods. This is meant to translate into a product with a lower price, greater benefit (in terms of durability or nutritional value) or both. Initially GM seed developers wanted their products to be accepted by producers so have concentrated on innovations that farmers (and the food industry more generally) would appreciate.

The initial objective for developing plants based on GM organisms was to improve crop protection. The GM crops currently on the market are mainly aimed at an increased level of crop protection through the introduction of resistance against plant diseases caused by insects or viruses or through increased tolerance towards herbicides.

Insect resistance is achieved by incorporating into the food plant the gene for toxin production from the bacterium Bacillus thuringiensis (BT). This toxin is currently used as a conventional insecticide in agriculture and is safe for human consumption. GM crops that permanently produce this toxin have been shown to require lower quantities of insecticides in specific situations, e.g. where pest pressure is high.

Virus resistance is achieved through the introduction of a gene from certain viruses which cause disease in plants. Virus resistance makes plants less susceptible to diseases caused by such viruses, resulting in higher crop yields.

Herbicide tolerance is achieved through the introduction of a gene from a bacterium conveying resistance to some herbicides. In situations where weed pressure is high, the use of such crops has resulted in a reduction in the quantity of the herbicides used.

Q3. Are GM foods assessed differently from traditional foods?

Generally consumers consider that traditional foods (that have often been eaten for thousands of years) are safe. When new foods are developed by natural methods, some of the existing characteristics of foods can be altered, either in a positive or a negative way National food authorities may be called upon to examine traditional foods, but this is not always the case. Indeed, new plants developed through traditional breeding techniques may not be evaluated rigorously using risk assessment techniques.

With GM foods most national authorities consider that specific assessments are necessary. Specific systems have been set up for the rigorous evaluation of GM organisms and GM foods relative to both human health and the environment. Similar evaluations are generally not performed for traditional foods. Hence there is a significant difference in the evaluation process prior to marketing for these two groups of food.

One of the objectives of the WHO Food Safety Programme is to assist national authorities in the identification of foods that should be subject to risk assessment, including GM foods, and to recommend the correct assessments.

Q4. How are the potential risks to human health determined?

The safety assessment of GM foods generally investigates: (a) direct health effects (toxicity), (b) tendencies to provoke allergic reaction (allergenicity); (c) specific components thought to have nutritional or toxic properties; (d) the stability of the inserted gene; (e) nutritional effects associated with genetic modification; and (f) any unintended effects which could result from the gene insertion.

Q5. What are the main issues of concern for human health?

While theoretical discussions have covered a broad range of aspects, the three main issues debated are tendencies to provoke allergic reaction (allergenicity), gene transfer and outcrossing.

Allergenicity. As a matter of principle, the transfer of genes from commonly allergenic foods is discouraged unless it can be demonstrated that the protein product of the transferred gene is not allergenic. While traditionally developed foods are not generally tested for allergenicity, protocols for tests for GM foods have been evaluated by the Food and Agriculture Organization of the United Nations (FAO) and WHO. No allergic effects have been found relative to GM foods currently on the market.

Gene transfer. Gene transfer from GM foods to cells of the body or to bacteria in the gastrointestinal tract would cause concern if the transferred genetic material adversely affects human health. This would be particularly relevant if antibiotic resistance genes, used in creating GMOs, were to be transferred. Although the probability of transfer is low, the use of technology without antibiotic resistance genes has been encouraged by a recent FAO/WHO expert panel.

Outcrossing. The movement of genes from GM plants into conventional crops or related species in the wild (referred to as “outcrossing”), as well as the mixing of crops derived from conventional seeds with those grown using GM crops, may have an indirect effect on food safety and food security. This risk is real, as was shown when traces of a maize type which was only approved for feed use appeared in maize products for human consumption in the United States of America. Several countries have adopted strategies to reduce mixing, including a clear separation of the fields within which GM crops and conventional crops are grown.

Feasibility and methods for post-marketing monitoring of GM food products, for the continued surveillance of the safety of GM food products, are under discussion.

Q6. How is a risk assessment for the environment performed?

Environmental risk assessments cover both the GMO concerned and the potential receiving environment. The assessment process includes evaluation of the characteristics of the GMO and its effect and stability in the environment, combined with ecological characteristics of the environment in which the introduction will take place. The assessment also includes unintended effects which could result from the insertion of the new gene.

Q7. What are the issues of concern for the environment?

Issues of concern include: the capability of the GMO to escape and potentially introduce the engineered genes into wild populations; the persistence of the gene after the GMO has been harvested; the susceptibility of non-target organisms (e.g. insects which are not pests) to the gene product; the stability of the gene; the reduction in the spectrum of other plants including loss of biodiversity; and increased use of chemicals in agriculture. The environmental safety aspects of GM crops vary considerably according to local conditions.

Current investigations focus on: the potentially detrimental effect on beneficial insects or a faster induction of resistant insects; the potential generation of new plant pathogens; the potential detrimental consequences for plant biodiversity and wildlife, and a decreased use of the important practice of crop rotation in certain local situations; and the movement of herbicide resistance genes to other plants.

Q8. Are GM foods safe?

Different GM organisms include different genes inserted in different ways. This means that individual GM foods and their safety should be assessed on a case-by-case basis and that it is not possible to make general statements on the safety of all GM foods.

GM foods currently available on the international market have passed risk assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous use of risk assessments based on the Codex principles and, where appropriate, including post market monitoring, should form the basis for evaluating the safety of GM foods.

Q9. How are GM foods regulated nationally?

The way governments have regulated GM foods varies. In some countries GM foods are not yet regulated. Countries which have legislation in place focus primarily on assessment of risks for consumer health. Countries which have provisions for GM foods usually also regulate GMOs in general, taking into account health and environmental risks, as well as control- and trade-related issues (such as potential testing and labelling regimes). In view of the dynamics of the debate on GM foods, legislation is likely to continue to evolve.

Q10. What kind of GM foods are on the market internationally?

All GM crops available on the international market today have been designed using one of three basic traits: resistance to insect damage; resistance to viral infections; and tolerance towards certain herbicides. All the genes used to modify crops are derived from microorganisms.

Q11. What happens when GM foods are traded internationally?

No specific international regulatory systems are currently in place. However, several international organizations are involved in developing protocols for GMOs.

The Codex Alimentarius Commission (Codex) is the joint FAO/WHO body responsible for compiling the standards, codes of practice, guidelines and recommendations that constitute the Codex Alimentarius: the international food code. Codex is developing principles for the human health risk analysis of GM foods. The premise of these principles dictates a premarket assessment, performed on a case-by-case basis and including an evaluation of both direct effects (from the inserted gene) and unintended effects (that may arise as a consequence of insertion of the new gene). The principles are at an advanced stage of development and are expected to be adopted in July 2003. Codex principles do not have a binding effect on national legislation, but are referred to specifically in the Sanitary and Phytosanitary Agreement of the World Trade Organization (SPS Agreement), and can be used as a reference in case of trade disputes.

The Cartagena Protocol on Biosafety (CPB), an environmental treaty legally binding for its Parties, regulates transboundary movements of living modified organisms (LMOs). GM foods are within the scope of the Protocol only if they contain LMOs that are capable of transferring or replicating genetic material. The cornerstone of the CPB is a requirement that exporters seek consent from importers before the first shipment of LMOs intended for release into the environment. The Protocol will enter into force 90 days after the 50th country has ratified it, which may be in early 2003 in view of the accelerated depositions registered since June 2002.

Q12. Have GM products on the international market passed a risk assessment?

The GM products that are currently on the international market have all passed risk assessments conducted by national authorities. These different assessments in general follow the same basic principles, including an assessment of environmental and human health risk. These assessments are thorough, they have not indicated any risk to human health.

Q13. Why has there been concern about GM foods among some politicians, public interest groups and consumers, especially in Europe?

Since the first introduction on the market in the mid-1990s of a major GM food (herbicide-resistant soybeans), there has been increasing concern about such food among politicians, activists and consumers, especially in Europe. Several factors are involved.

In the late 1980s – early 1990s, the results of decades of molecular research reached the public domain. Until that time, consumers were generally not very aware of the potential of this research. In the case of food, consumers started to wonder about safety because they perceive that modern biotechnology is leading to the creation of new species.

Consumers frequently ask, “what is in it for me?”. Where medicines are concerned, many consumers more readily accept biotechnology as beneficial for their health (e.g. medicines with improved treatment potential). In the case of the first GM foods introduced onto the European market, the products were of no apparent direct benefit to consumers (not cheaper, no increased shelf-life, no better taste). The potential for GM seeds to result in bigger yields per cultivated area should lead to lower prices. However, public attention has focused on the risk side of the risk-benefit equation.

Consumer confidence in the safety of food supplies in Europe has decreased significantly as a result of a number of food scares that took place in the second half of the 1990s that are unrelated to GM foods. This has also had an impact on discussions about the acceptability of GM foods. Consumers have questioned the validity of risk assessments, both with regard to consumer health and environmental risks, focusing in particular on long-term effects. Other topics for debate by consumer organizations have included allergenicity and antimicrobial resistance. Consumer concerns have triggered a discussion on the desirability of labelling GM foods, allowing an informed choice. At the same time, it has proved difficult to detect traces of GMOs in foods: this means that very low concentrations often cannot be detected.

Q14. How has this concern affected the marketing of GM foods in the European Union?

The public concerns about GM food and GMOs in general have had a significant impact on the marketing of GM products in the European Union (EU). In fact, they have resulted in the so-called moratorium on approval of GM products to be placed on the market. Marketing of GM food and GMOs in general are the subject of extensive legislation. Community legislation has been in place since the early 1990s. The procedure for approval of the release of GMOs into the environment is rather complex and basically requires agreement between the Member States and the European Commission. Between 1991 and 1998, the marketing of 18 GMOs was authorized in the EU by a Commission decision.

As of October 1998, no further authorizations have been granted and there are currently 12 applications pending. Some Member States have invoked a safeguard clause to temporarily ban the placing on the market in their country of GM maize and oilseed rape products. There are currently nine ongoing cases. Eight of these have been examined by the Scientific Committee on Plants, which in all cases deemed that the information submitted by Member States did not justify their bans.

During the 1990s, the regulatory framework was further extended and refined in response to the legitimate concerns of citizens, consumer organizations and economic operators (described under Question 13). A revised directive will come into force in October 2002. It will update and strengthen the existing rules concerning the process of risk assessment, risk management and decision-making with regard to the release of GMOs into the environment. The new directive also foresees mandatory monitoring of long-term effects associated with the interaction between GMOs and the environment.

Labelling in the EU is mandatory for products derived from modern biotechnology or products containing GM organisms. Legislation also addresses the problem of accidental contamination of conventional food by GM material. It introduces a 1% minimum threshold for DNA or protein resulting from genetic modification, below which labelling is not required.

In 2001, the European Commission adopted two new legislative proposals on GMOs concerning traceability, reinforcing current labelling rules and streamlining the authorization procedure for GMOs in food and feed and for their deliberate release into the environment.

The European Commission is of the opinion that these new proposals, building on existing legislation, aim to address the concerns of Member States and to build consumer confidence in the authorization of GM products. The Commission expects that adoption of these proposals will pave the way for resuming the authorization of new GM products in the EU.

Q15. What is the state of public debate on GM foods in other regions of the world?

The release of GMOs into the environment and the marketing of GM foods have resulted in a public debate in many parts of the world. This debate is likely to continue, probably in the broader context of other uses of biotechnology (e.g. in human medicine) and their consequences for human societies. Even though the issues under debate are usually very similar (costs and benefits, safety issues), the outcome of the debate differs from country to country. On issues such as labelling and traceability of GM foods as a way to address consumer concerns, there is no consensus to date. This has become apparent during discussions within the Codex Alimentarius Commission over the past few years. Despite the lack of consensus on these topics, significant progress has been made on the harmonization of views concerning risk assessment. The Codex Alimentarius Commission is about to adopt principles on premarket risk assessment, and the provisions of the Cartegena Protocol on Biosafety also reveal a growing understanding at the international level.

Most recently, the humanitarian crisis in southern Africa has drawn attention to the use of GM food as food aid in emergency situations. A number of governments in the region raised concerns relating to environmental and food safety fears. Although workable solutions have been found for distribution of milled grain in some countries, others have restricted the use of GM food aid and obtained commodities which do not contain GMOs.

Q16. Are people’s reactions related to the different attitudes to food in various regions of the world?

Depending on the region of the world, people often have different attitudes to food. In addition to nutritional value, food often has societal and historical connotations, and in some instances may have religious importance. Technological modification of food and food production can evoke a negative response among consumers, especially in the absence of good communication on risk assessment efforts and cost/benefit evaluations.

Q17. Are there implications for the rights of farmers to own their crops?

Yes, intellectual property rights are likely to be an element in the debate on GM foods, with an impact on the rights of farmers. Intellectual property rights (IPRs), especially patenting obligations of the TRIPS Agreement (an agreement under the World Trade Organization concerning trade-related aspects of intellectual property rights) have been discussed in the light of their consequences on the further availability of a diversity of crops. In the context of the related subject of the use of gene technology in medicine, WHO has reviewed the conflict between IPRs and an equal access to genetic resources and the sharing of benefits. The review has considered potential problems of monopolization and doubts about new patent regulations in the field of genetic sequences in human medicine. Such considerations are likely to also affect the debate on GM foods.

Q18. Why are certain groups concerned about the growing influence of the chemical industry on agriculture?

Certain groups are concerned about what they consider to be an undesirable level of control of seed markets by a few chemical companies. Sustainable agriculture and biodiversity benefit most from the use of a rich variety of crops, both in terms of good crop protection practices as well as from the perspective of society at large and the values attached to food. These groups fear that as a result of the interest of the chemical industry in seed markets, the range of varieties used by farmers may be reduced mainly to GM crops. This would impact on the food basket of a society as well as in the long run on crop protection (for example, with the development of resistance against insect pests and tolerance of certain herbicides). The exclusive use of herbicide-tolerant GM crops would also make the farmer dependent on these chemicals. These groups fear a dominant position of the chemical industry in agricultural development, a trend which they do not consider to be sustainable.

Q19. What further developments can be expected in the area of GMOs?

Future GM organisms are likely to include plants with improved disease or drought resistance, crops with increased nutrient levels, fish species with enhanced growth characteristics and plants or animals producing pharmaceutically important proteins such as vaccines. At the international level, the response to new developments can be found in the expert consultations organized by FAO and WHO in 2000 and 2001, and the subsequent work of the Codex ad hoc Task Force on Foods Derived from Biotechnology. This work has resulted in an improved and harmonized framework for the risk assessment of GM foods in general. Specific questions, such as the evaluation of allergenicity of GM foods or the safety of foods derived from GM microorganisms, have been covered and an expert consultation organized by FAO and WHO will focus on foods derived from GM animals in 2003.

Q20. What is WHO doing to improve the evaluation of GM foods?

WHO will take an active role in relation to GM foods, primarily for two reasons:

(1) on the grounds that public health could benefit enormously from the potential of biotechnology, for example, from an increase in the nutrient content of foods, decreased allergenicity and more efficient food production; and (2) based on the need to examine the potential negative effects on human health of the consumption of food produced through genetic modification, also at the global level. It is clear that modern technologies must be thoroughly evaluated if they are to constitute a true improvement in the way food is produced. Such evaluations must be holistic and all-inclusive, and cannot stop at the previously separated, non-coherent systems of evaluation focusing solely on human health or environmental effects in isolation.

Work is therefore under way in WHO to present a broader view of the evaluation of GM foods in order to enable the consideration of other important factors. This more holistic evaluation of GM organisms and GM products will consider not only safety but also food security, social and ethical aspects, access and capacity building. International work in this new direction presupposes the involvement of other key international organizations in this area. As a first step, the WHO Executive Board will discuss the content of a WHO report covering this subject in January 2003. The report is being developed in collaboration with other key organizations, notably FAO and the United Nations Environment Programme (UNEP). It is hoped that this report could form the basis for a future initiative towards a more systematic, coordinated, multi-organizational and international evaluation of certain GM foods.


Courtesy : Anna Kopecky via Youtube, BBC, WHO

Documentary : Space Station Tour

Most of the modules in the International Space Station have four sides and they’re put together that way so the people can work on a flat plane; wall, floor, another wall, or the ceiling. All you have to do is turn yourself around and your reference changes. People always ask about sleeping in space. Do you lie down? Not really, because it doesn’t matter. You don’t have the sensation of lying down, so you just sit in your sleeping bag.

The sleeping stations are like phone booths, but pretty comfy and you can sleep in any orientation in them. Astronauts don’t have any sensation that tells them that they’re upside down. In the same time sleeping booths are small offices with a laptops, toys, books, and clothes in them.

One of the things that astronauts also do is exercise. They need to exercise because they lose bone density and muscle mass while they’re up there, and that’s a result of not having to fight against gravity. They keep themselves in a shape with a bike, treadmill and a weight lifting machine. The bike doesn’t have a seat, because the astronauts don’t sit down. They actually haven’t sat down for six months.

The bike is not firmly attached to the wall because if they start putting forces on the space station it’s going to make the solar panels bounce around a little bit. So to prevent that, the machines in the space station bounce around a little bit and that way they don’t put any forces onto the structure of the spacecraft and out to the solar panels.

There is also a module where everybody meets in the morning. After you wash your face, and brush your teeth, you want to find something for breakfast. There are all sorts of foods in the kitchen module: drinks, meat, eggs, vegetables, cereals, bread, snacks, side dishes, and some power bars. Some of this food is dehydrated, some of it is readymade.

There are spacesuits ready and primed up to go outside (the astronauts call it space walking) in case they need to do anything outside of the space station. Most of the things they do outside are repairs. There are lot of electrical boxes and machinery that are outside and sometimes they don’t work quite right because the space is actually extremely cold vacuum.

The spacesuits are pretty big and part of the reason they’re so big and bulky is because of their backside. The backpack and the suit weigh about 136 kilograms. Luckily in space nothing really weighs anything so you don’t feel the weight.