Alert! : 27 Effects of Smoking on Body

This Interactive info from Healthline would be an eye opener for many. We all knew it “Smoking is injurious to health” But how?

Click on the image below or this link to go to their page where you can this interactive chart allowing the reader to pick the side effect they want to learn more about.

27 effects smoking


Courtesy & Source: Maggie Danhakl & Healthline

Know : Finding Adulterated Tea

Adulterated Tea

Left (Original)                                                       Right (Adulterated)

Tea is normally adulterated using re-colored used tea, waste (leftover leaves after straining the tea) is collected from tea stalls, dried in the sun, mixed with colours (water soluble coal tar dyes) and some amount of genuine tea to give it the flavour and this mixture is sold as loose tea

There is a simple test to detect if the tea has been adulterated. Take a blotting paper, wet it by sprinkling some water over it and then sprinkle the tea powder over it. If you come across yellow, orange or red spots on the blotting paper, then the tea has been adulterated by using artificial color. Pure tea leaves release color only when they are put into boiling water. Or simply add a teaspoon of tea dust to a glass of water. If you see any patches of colours(as shown in the image) then the tea is adulterated.

PS : We found this method on the internet, if you have any other methods please share it with us as a comment or a mail to helpdesk@propelsteps.com Not just for Tea, for any food we eat.

Know : List of Foods’ Storage Periods

 

Food-storage-shelf-items

Proper food storage helps maintain food quality by retaining flavor, color, texture and nutrients, while reducing the chance of contracting a food-borne illness. Foods can be classified into three groups.

  • Perishable foods include meat, poultry, fish, milk, eggs and many raw fruits and vegetables. All cooked foods are considered perishable foods. To store these foods for any length of time, perishable foods need to be held at refrigerator or freezer temperatures. If refrigerated, perishable foods should be used within several days.
  • Semi-perishable foods, if properly stored and handled, may remain unspoiled for six months to about one year. Flour, grain products, dried fruits and dry mixes are considered semi-perishable.
  • Staple, or non-perishable, foods such as sugar, dried beans, spices and canned goods do not spoil unless they are handled carelessly. These foods will lose quality, however, if stored over a long time, even if stored under ideal conditions.

There is no exact method to determine how long a food will maintain quality and be safe to eat, because many conditions affect the quality. The storage life of foods is affected by the:

  • freshness of the food when it reached the grocery store
  • length of time and the temperature at which it was held before purchase
  • temperature of your food storage areas
  • humidity level in your food storage areas
  • type of storage container or packaging the food is stored in
  • characteristics of the food item

 

Storage Periods for Retaining Food Quality
Food Room Temperature Refrigerator Freezer at 0°F
Milk/Milk Products
Milk 1 week 1 month
Butter 2 weeks 12 months
Canned or dry milk (unopened) 6 months
Cottage cheese 1 week 3 months
Cream 1-2 weeks
Ice cream 2-3 weeks
Margarine 1 month 12 months
Natural cheese 1 month 4-6 months
Processed cheese 1 month 4-6 months
Sour cream, buttermilk, cream cheese 2 weeks Not recommended
Yogurt 1 month
Meat
Fresh roasts, steaks, chops 3-4 days 2-3 months
Fresh livers, hearts, kidneys, other variety meats 1-2 days 3-4 months
Fresh ground meat, stew meat 1-2 days 3-4 months
Cured pork and lunch meat 1 week Not recommended
Cooked meat, gravies made with meat stock 2-3 days 2-3 months
Canned meat 1 year
Meat pies, stews, casseroles, meat salads 2-3 days 3 months
Hotdogs 1 week (opened) 2 weeks (unopened) 1-2 months
Bacon 7 days 1 month
Sausage, raw from pork, beef, turkey 1-2 days 1-2 months
Hard sausage-pepperoni, jerky sticks 2-3 weeks 1-2 months
Poultry/Eggs
Fresh poultry 2 days 6-8 months
Cooked poultry 2-3 days 6 months
Poultry stuffing 1 day
Poultry pies, stews, creamed dishes, gravies 1 day 6 months
Poultry salads 1 day
Eggs 2-4 weeks 1 year
Raw yolk, whites 2-4 days 1 year
Hardcooked eggs 1 week Not recommended
Liquid pasteurized eggs or egg substitutes 10 days (unopened) 3 days (opened) 1 year (unopened)
Egg-containing products: custards, custard sauces, puddings, custard-filled pastries or cakes 1-2 days Not recommended
Puddings, canned 1-2 days (opened)
Fish/Seafood
Fresh fish 1-2 days 3-6 months
Cooked fish 3-4 days 1 month
Fish salad 1 day
Smoked fish 10 days 4-5 weeks
Canned fish 1 year Not recommended
Dried or pickled fish 3-4 weeks
Clams, oyster (shucked) and scallops 7-9 days
Crab 7 days 2 months
Shrimp 3-5 days 6-12 months
Lobster (shelled or unshelled) 3-7 days 6-12 months
Wild Game
Venison 3-5 days 3-4 months
Rabbit, squirrel 1-2 days 12 months
Wild duck, pheasant, goose(whole) 1-2 days 6 months
Fruits
Apples Until ripe 1 month
Citrus fruits 2-6 weeks
Grapes 1-3 weeks
Melons, most varieties 1 week
Peaches, nectarines 2-3 weeks
Pears (mature but not fully ripe) 1-3 months
Pineapple, ripe 1 week
Other fresh fruit Until ripe 3-5 days 9-12 months
Canned fruit 1 year 2-4 days (opened)
Dried fruit 6 months 2-4 days (cooked)
Fruit juice concentrates 1 year
Canned fruit juices 1 year 3-4 days (opened)
Vegetables
Asparagus 2-3 days
Broccoli, brussels sprouts, green peas, green onions, lima beans, rhubarb, greens, summer squash, mushrooms 3-5 days
Cabbage, cauliflower, celery, cucumbers, snap beans, lettuce, peppers, tomatoes 1 week
Carrots, beets, parsnips, radishes, turnips 2 weeks
Corn 1 day
White potatoes, sweet potatoes, winter squash, rutabagas, dry onions 1 week (several months at 50-60°F)
Canned or dried vegetables 1 year 1-4 days (opened/cooked)
Cereal Products
Flour, white 1 year
Flour, whole or wheat 6-8 months 1 year
Rice, white 2 years
Rice, brown 6 months
Ready-to-eat cereals 1 year
Uncooked cereals 1 year
Pasta 1 year
Corn meal 1 year
Bakery Goods
Breads, baked with no preservatives 2-3 weeks 2-3 months
Breads, quick, baked 2 months
Cake, angel 6-12 months
Cake, baked, frosted 1 month
Cake, baked, unfrosted 2-4 months
Cakes, batter 1 month
Cakes, fruit 6-12 months
Cinnamon rolls, partially baked 2 months
Cookies, baked, homemade 2-3 weeks 6-12 months
Cookies, dough 1-2 days 3 months
Cookies, packaged 2 months 12-18 months
Crackers 2 months
Doughnuts, unfrosted 2-4 months
Muffins, baked 6-12 months
Pies, fruit 2-3 days (baked) 1-2 days (unbaked) 6-8 months (baked) 2-4 months (unbaked)
Pies, pumpkin or chiffon 2-3 days 1-2 months
Rolls and bread, unbaked 2-3 weeks 1 month
Waffles 1 month
Mixes/Packaged Foods
Biscuit, brownie, muffin mix 9 months
Cake mixes 6-9 months
Casserole mix 9-12 months
Cookies, homemade 2-3 weeks
Cookies, packaged 2 months
Crackers 3 months
Croutons and bread crumbs 6 months 6 months 1 year
Frosting, canned 3 months
Frosting, mix 8 months
Hot roll mix 18 months
Pancake mix 6-9 months
Piecrust, mix 6-9 months
Potatoes, instant 6-12 months
Rice mixes 6 months
Sauce and gravy mixes 6-12 months
Soup mixes 12 months
Toaster pastries 2-3 months
Other Foods
Baking powder 18 months
Baking soda 2 years
Chocolate syrup 2 years (unopened) 6 months (opened)
Cocoa mixes 8 months
Coffee, lighteners (dry) 9 months (unopened) 6 months (opened)
Cornstarch 18 months
Gelatin 18 months
Pectin 1 year
Salad dressings, bottled 12 months (unopened) 1-3 months (opened) Not recommended
Sugar, brown 18 months
Sugar, confectioners’ 18 months
Sugar, granulated 2 years
Vinegar 2 years (unopened) 1 year (opened)
Cheese, parmesan, grated 10 months (unopened) 2 months (opened)
Coconut, shredded 12 months (unopened) 6 months (opened)
Imitation bacon bits, etc. 4 months
Peas, beans, dried 12 months
Popcorn 2 years
Whipped topping, dry 12 months
Yeast, dry Expiration date on package
Honey, jams, syrups, molasses 1 year
Nuts, unshelled 6 months
Nuts, shelled 6 months
Peanut butter 6 months (unopened) 2 months (opened)
Chocolate 1 year
Coffee 1 year (unopened) 2-4 weeks (opened)
Coffee, instant 6 months (unopened) 2 months (opened)
Pudding mixes 1 year
Shortening, solid 8 months
Vegetable oils 1-3 months
Tea, bags or loose 1 year
Tea, instant 1 year
Soft drinks 3 months
Bouillon products 1 year
Mayonnaise 10-12 weeks Not recommended
Spices, Herbs, Condiments, Extracts
Catsup, chili sauce 12 months (unopened) 1 month (opened)
Mustard, prepared yellow (refrigerate 2 years (unopened) for longer storage) 6-8 months (opened)
Spices, whole 1-2 years
Spices, ground 6 months
Herbs 6 months
Herb/spice blends 2 years (unopened) 12 months (opened)
Other extracts 12 months

Exclusive Cupboard Storage Chart
• Store foods in cool cabinets and away from appliances which produce heat.
• Many staples and canned foods have a relatively long shelf life, but buy only what you can expect to use within the time recommended in the chart. Date food packages and use the oldest first. Foods stored for longer than recommended times or beyond date on the package may change quality, color and flavor.
• Buy fresh-looking packages. Dusty cans or torn labels can indicate old stock. Do not purchase dented or bulging cans.

Cupboard Storage Cupboard Storage2

Courtesy & Credits : UNIVERSITY OF NEBRASKA–LINCOLN &  North Dakota State University

Excerpts from original articles by


 

Know : Genetically Modified Foods : 20 Questions : WHO’s Answers

Must Know: Find the answers to these 20 questions on Genetically Modified Foods by the World Health Organization, (below the video)

1. What are genetically modified (GM) organisms and GM foods?
2. Why are GM foods produced?
3. Are GM foods assessed differently from traditional foods?
4. How are the potential risks to human health determined?
5. What are the main issues of concern for human health?
6. How is a risk assessment for the environment performed?
7. What are the issues of concern for the environment?
8. Are GM foods safe?
9. How are GM foods regulated nationally?
10. What kind of GM foods are on the market internationally?
11. What happens when GM foods are traded internationally?
12. Have GM products on the international market passed a risk assessment?
13. Why has there been concern about GM foods among some politicians, public interest groups and consumers, especially in Europe?
14. How has this concern affected the marketing of GM foods in the European Union?
15. What is the state of public debate on GM foods in other regions of the world?
16. Are people’s reactions related to the different attitudes to food in various regions of the world?
17. Are there implications for the rights of farmers to own their crops?
18. Why are certain groups concerned about the growing influence of the chemical industry on agriculture?
19. What further developments can be expected in the area of GMOs?
20. What is WHO doing to improve the evaluation of GM foods?

Note: This documentary is not by WHO, it is from another source.

These questions and answers have been prepared by WHO in response to questions and concerns by a number of WHO Member State Governments with regard to the nature and safety of genetically modified food.

Q1. What are genetically modified (GM) organisms and GM foods?

Genetically modified organisms (GMOs) can be defined as organisms in which the genetic material (DNA) has been altered in a way that does not occur naturally. The technology is often called “modern biotechnology” or “gene technology”, sometimes also “recombinant DNA technology” or “genetic engineering”. It allows selected individual genes to be transferred from one organism into another, also between non-related species.

Such methods are used to create GM plants – which are then used to grow GM food crops.

Q2. Why are GM foods produced?

GM foods are developed – and marketed – because there is some perceived advantage either to the producer or consumer of these foods. This is meant to translate into a product with a lower price, greater benefit (in terms of durability or nutritional value) or both. Initially GM seed developers wanted their products to be accepted by producers so have concentrated on innovations that farmers (and the food industry more generally) would appreciate.

The initial objective for developing plants based on GM organisms was to improve crop protection. The GM crops currently on the market are mainly aimed at an increased level of crop protection through the introduction of resistance against plant diseases caused by insects or viruses or through increased tolerance towards herbicides.

Insect resistance is achieved by incorporating into the food plant the gene for toxin production from the bacterium Bacillus thuringiensis (BT). This toxin is currently used as a conventional insecticide in agriculture and is safe for human consumption. GM crops that permanently produce this toxin have been shown to require lower quantities of insecticides in specific situations, e.g. where pest pressure is high.

Virus resistance is achieved through the introduction of a gene from certain viruses which cause disease in plants. Virus resistance makes plants less susceptible to diseases caused by such viruses, resulting in higher crop yields.

Herbicide tolerance is achieved through the introduction of a gene from a bacterium conveying resistance to some herbicides. In situations where weed pressure is high, the use of such crops has resulted in a reduction in the quantity of the herbicides used.

Q3. Are GM foods assessed differently from traditional foods?

Generally consumers consider that traditional foods (that have often been eaten for thousands of years) are safe. When new foods are developed by natural methods, some of the existing characteristics of foods can be altered, either in a positive or a negative way National food authorities may be called upon to examine traditional foods, but this is not always the case. Indeed, new plants developed through traditional breeding techniques may not be evaluated rigorously using risk assessment techniques.

With GM foods most national authorities consider that specific assessments are necessary. Specific systems have been set up for the rigorous evaluation of GM organisms and GM foods relative to both human health and the environment. Similar evaluations are generally not performed for traditional foods. Hence there is a significant difference in the evaluation process prior to marketing for these two groups of food.

One of the objectives of the WHO Food Safety Programme is to assist national authorities in the identification of foods that should be subject to risk assessment, including GM foods, and to recommend the correct assessments.

Q4. How are the potential risks to human health determined?

The safety assessment of GM foods generally investigates: (a) direct health effects (toxicity), (b) tendencies to provoke allergic reaction (allergenicity); (c) specific components thought to have nutritional or toxic properties; (d) the stability of the inserted gene; (e) nutritional effects associated with genetic modification; and (f) any unintended effects which could result from the gene insertion.

Q5. What are the main issues of concern for human health?

While theoretical discussions have covered a broad range of aspects, the three main issues debated are tendencies to provoke allergic reaction (allergenicity), gene transfer and outcrossing.

Allergenicity. As a matter of principle, the transfer of genes from commonly allergenic foods is discouraged unless it can be demonstrated that the protein product of the transferred gene is not allergenic. While traditionally developed foods are not generally tested for allergenicity, protocols for tests for GM foods have been evaluated by the Food and Agriculture Organization of the United Nations (FAO) and WHO. No allergic effects have been found relative to GM foods currently on the market.

Gene transfer. Gene transfer from GM foods to cells of the body or to bacteria in the gastrointestinal tract would cause concern if the transferred genetic material adversely affects human health. This would be particularly relevant if antibiotic resistance genes, used in creating GMOs, were to be transferred. Although the probability of transfer is low, the use of technology without antibiotic resistance genes has been encouraged by a recent FAO/WHO expert panel.

Outcrossing. The movement of genes from GM plants into conventional crops or related species in the wild (referred to as “outcrossing”), as well as the mixing of crops derived from conventional seeds with those grown using GM crops, may have an indirect effect on food safety and food security. This risk is real, as was shown when traces of a maize type which was only approved for feed use appeared in maize products for human consumption in the United States of America. Several countries have adopted strategies to reduce mixing, including a clear separation of the fields within which GM crops and conventional crops are grown.

Feasibility and methods for post-marketing monitoring of GM food products, for the continued surveillance of the safety of GM food products, are under discussion.

Q6. How is a risk assessment for the environment performed?

Environmental risk assessments cover both the GMO concerned and the potential receiving environment. The assessment process includes evaluation of the characteristics of the GMO and its effect and stability in the environment, combined with ecological characteristics of the environment in which the introduction will take place. The assessment also includes unintended effects which could result from the insertion of the new gene.

Q7. What are the issues of concern for the environment?

Issues of concern include: the capability of the GMO to escape and potentially introduce the engineered genes into wild populations; the persistence of the gene after the GMO has been harvested; the susceptibility of non-target organisms (e.g. insects which are not pests) to the gene product; the stability of the gene; the reduction in the spectrum of other plants including loss of biodiversity; and increased use of chemicals in agriculture. The environmental safety aspects of GM crops vary considerably according to local conditions.

Current investigations focus on: the potentially detrimental effect on beneficial insects or a faster induction of resistant insects; the potential generation of new plant pathogens; the potential detrimental consequences for plant biodiversity and wildlife, and a decreased use of the important practice of crop rotation in certain local situations; and the movement of herbicide resistance genes to other plants.

Q8. Are GM foods safe?

Different GM organisms include different genes inserted in different ways. This means that individual GM foods and their safety should be assessed on a case-by-case basis and that it is not possible to make general statements on the safety of all GM foods.

GM foods currently available on the international market have passed risk assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous use of risk assessments based on the Codex principles and, where appropriate, including post market monitoring, should form the basis for evaluating the safety of GM foods.

Q9. How are GM foods regulated nationally?

The way governments have regulated GM foods varies. In some countries GM foods are not yet regulated. Countries which have legislation in place focus primarily on assessment of risks for consumer health. Countries which have provisions for GM foods usually also regulate GMOs in general, taking into account health and environmental risks, as well as control- and trade-related issues (such as potential testing and labelling regimes). In view of the dynamics of the debate on GM foods, legislation is likely to continue to evolve.

Q10. What kind of GM foods are on the market internationally?

All GM crops available on the international market today have been designed using one of three basic traits: resistance to insect damage; resistance to viral infections; and tolerance towards certain herbicides. All the genes used to modify crops are derived from microorganisms.

Q11. What happens when GM foods are traded internationally?

No specific international regulatory systems are currently in place. However, several international organizations are involved in developing protocols for GMOs.

The Codex Alimentarius Commission (Codex) is the joint FAO/WHO body responsible for compiling the standards, codes of practice, guidelines and recommendations that constitute the Codex Alimentarius: the international food code. Codex is developing principles for the human health risk analysis of GM foods. The premise of these principles dictates a premarket assessment, performed on a case-by-case basis and including an evaluation of both direct effects (from the inserted gene) and unintended effects (that may arise as a consequence of insertion of the new gene). The principles are at an advanced stage of development and are expected to be adopted in July 2003. Codex principles do not have a binding effect on national legislation, but are referred to specifically in the Sanitary and Phytosanitary Agreement of the World Trade Organization (SPS Agreement), and can be used as a reference in case of trade disputes.

The Cartagena Protocol on Biosafety (CPB), an environmental treaty legally binding for its Parties, regulates transboundary movements of living modified organisms (LMOs). GM foods are within the scope of the Protocol only if they contain LMOs that are capable of transferring or replicating genetic material. The cornerstone of the CPB is a requirement that exporters seek consent from importers before the first shipment of LMOs intended for release into the environment. The Protocol will enter into force 90 days after the 50th country has ratified it, which may be in early 2003 in view of the accelerated depositions registered since June 2002.

Q12. Have GM products on the international market passed a risk assessment?

The GM products that are currently on the international market have all passed risk assessments conducted by national authorities. These different assessments in general follow the same basic principles, including an assessment of environmental and human health risk. These assessments are thorough, they have not indicated any risk to human health.

Q13. Why has there been concern about GM foods among some politicians, public interest groups and consumers, especially in Europe?

Since the first introduction on the market in the mid-1990s of a major GM food (herbicide-resistant soybeans), there has been increasing concern about such food among politicians, activists and consumers, especially in Europe. Several factors are involved.

In the late 1980s – early 1990s, the results of decades of molecular research reached the public domain. Until that time, consumers were generally not very aware of the potential of this research. In the case of food, consumers started to wonder about safety because they perceive that modern biotechnology is leading to the creation of new species.

Consumers frequently ask, “what is in it for me?”. Where medicines are concerned, many consumers more readily accept biotechnology as beneficial for their health (e.g. medicines with improved treatment potential). In the case of the first GM foods introduced onto the European market, the products were of no apparent direct benefit to consumers (not cheaper, no increased shelf-life, no better taste). The potential for GM seeds to result in bigger yields per cultivated area should lead to lower prices. However, public attention has focused on the risk side of the risk-benefit equation.

Consumer confidence in the safety of food supplies in Europe has decreased significantly as a result of a number of food scares that took place in the second half of the 1990s that are unrelated to GM foods. This has also had an impact on discussions about the acceptability of GM foods. Consumers have questioned the validity of risk assessments, both with regard to consumer health and environmental risks, focusing in particular on long-term effects. Other topics for debate by consumer organizations have included allergenicity and antimicrobial resistance. Consumer concerns have triggered a discussion on the desirability of labelling GM foods, allowing an informed choice. At the same time, it has proved difficult to detect traces of GMOs in foods: this means that very low concentrations often cannot be detected.

Q14. How has this concern affected the marketing of GM foods in the European Union?

The public concerns about GM food and GMOs in general have had a significant impact on the marketing of GM products in the European Union (EU). In fact, they have resulted in the so-called moratorium on approval of GM products to be placed on the market. Marketing of GM food and GMOs in general are the subject of extensive legislation. Community legislation has been in place since the early 1990s. The procedure for approval of the release of GMOs into the environment is rather complex and basically requires agreement between the Member States and the European Commission. Between 1991 and 1998, the marketing of 18 GMOs was authorized in the EU by a Commission decision.

As of October 1998, no further authorizations have been granted and there are currently 12 applications pending. Some Member States have invoked a safeguard clause to temporarily ban the placing on the market in their country of GM maize and oilseed rape products. There are currently nine ongoing cases. Eight of these have been examined by the Scientific Committee on Plants, which in all cases deemed that the information submitted by Member States did not justify their bans.

During the 1990s, the regulatory framework was further extended and refined in response to the legitimate concerns of citizens, consumer organizations and economic operators (described under Question 13). A revised directive will come into force in October 2002. It will update and strengthen the existing rules concerning the process of risk assessment, risk management and decision-making with regard to the release of GMOs into the environment. The new directive also foresees mandatory monitoring of long-term effects associated with the interaction between GMOs and the environment.

Labelling in the EU is mandatory for products derived from modern biotechnology or products containing GM organisms. Legislation also addresses the problem of accidental contamination of conventional food by GM material. It introduces a 1% minimum threshold for DNA or protein resulting from genetic modification, below which labelling is not required.

In 2001, the European Commission adopted two new legislative proposals on GMOs concerning traceability, reinforcing current labelling rules and streamlining the authorization procedure for GMOs in food and feed and for their deliberate release into the environment.

The European Commission is of the opinion that these new proposals, building on existing legislation, aim to address the concerns of Member States and to build consumer confidence in the authorization of GM products. The Commission expects that adoption of these proposals will pave the way for resuming the authorization of new GM products in the EU.

Q15. What is the state of public debate on GM foods in other regions of the world?

The release of GMOs into the environment and the marketing of GM foods have resulted in a public debate in many parts of the world. This debate is likely to continue, probably in the broader context of other uses of biotechnology (e.g. in human medicine) and their consequences for human societies. Even though the issues under debate are usually very similar (costs and benefits, safety issues), the outcome of the debate differs from country to country. On issues such as labelling and traceability of GM foods as a way to address consumer concerns, there is no consensus to date. This has become apparent during discussions within the Codex Alimentarius Commission over the past few years. Despite the lack of consensus on these topics, significant progress has been made on the harmonization of views concerning risk assessment. The Codex Alimentarius Commission is about to adopt principles on premarket risk assessment, and the provisions of the Cartegena Protocol on Biosafety also reveal a growing understanding at the international level.

Most recently, the humanitarian crisis in southern Africa has drawn attention to the use of GM food as food aid in emergency situations. A number of governments in the region raised concerns relating to environmental and food safety fears. Although workable solutions have been found for distribution of milled grain in some countries, others have restricted the use of GM food aid and obtained commodities which do not contain GMOs.

Q16. Are people’s reactions related to the different attitudes to food in various regions of the world?

Depending on the region of the world, people often have different attitudes to food. In addition to nutritional value, food often has societal and historical connotations, and in some instances may have religious importance. Technological modification of food and food production can evoke a negative response among consumers, especially in the absence of good communication on risk assessment efforts and cost/benefit evaluations.

Q17. Are there implications for the rights of farmers to own their crops?

Yes, intellectual property rights are likely to be an element in the debate on GM foods, with an impact on the rights of farmers. Intellectual property rights (IPRs), especially patenting obligations of the TRIPS Agreement (an agreement under the World Trade Organization concerning trade-related aspects of intellectual property rights) have been discussed in the light of their consequences on the further availability of a diversity of crops. In the context of the related subject of the use of gene technology in medicine, WHO has reviewed the conflict between IPRs and an equal access to genetic resources and the sharing of benefits. The review has considered potential problems of monopolization and doubts about new patent regulations in the field of genetic sequences in human medicine. Such considerations are likely to also affect the debate on GM foods.

Q18. Why are certain groups concerned about the growing influence of the chemical industry on agriculture?

Certain groups are concerned about what they consider to be an undesirable level of control of seed markets by a few chemical companies. Sustainable agriculture and biodiversity benefit most from the use of a rich variety of crops, both in terms of good crop protection practices as well as from the perspective of society at large and the values attached to food. These groups fear that as a result of the interest of the chemical industry in seed markets, the range of varieties used by farmers may be reduced mainly to GM crops. This would impact on the food basket of a society as well as in the long run on crop protection (for example, with the development of resistance against insect pests and tolerance of certain herbicides). The exclusive use of herbicide-tolerant GM crops would also make the farmer dependent on these chemicals. These groups fear a dominant position of the chemical industry in agricultural development, a trend which they do not consider to be sustainable.

Q19. What further developments can be expected in the area of GMOs?

Future GM organisms are likely to include plants with improved disease or drought resistance, crops with increased nutrient levels, fish species with enhanced growth characteristics and plants or animals producing pharmaceutically important proteins such as vaccines. At the international level, the response to new developments can be found in the expert consultations organized by FAO and WHO in 2000 and 2001, and the subsequent work of the Codex ad hoc Task Force on Foods Derived from Biotechnology. This work has resulted in an improved and harmonized framework for the risk assessment of GM foods in general. Specific questions, such as the evaluation of allergenicity of GM foods or the safety of foods derived from GM microorganisms, have been covered and an expert consultation organized by FAO and WHO will focus on foods derived from GM animals in 2003.

Q20. What is WHO doing to improve the evaluation of GM foods?

WHO will take an active role in relation to GM foods, primarily for two reasons:

(1) on the grounds that public health could benefit enormously from the potential of biotechnology, for example, from an increase in the nutrient content of foods, decreased allergenicity and more efficient food production; and (2) based on the need to examine the potential negative effects on human health of the consumption of food produced through genetic modification, also at the global level. It is clear that modern technologies must be thoroughly evaluated if they are to constitute a true improvement in the way food is produced. Such evaluations must be holistic and all-inclusive, and cannot stop at the previously separated, non-coherent systems of evaluation focusing solely on human health or environmental effects in isolation.

Work is therefore under way in WHO to present a broader view of the evaluation of GM foods in order to enable the consideration of other important factors. This more holistic evaluation of GM organisms and GM products will consider not only safety but also food security, social and ethical aspects, access and capacity building. International work in this new direction presupposes the involvement of other key international organizations in this area. As a first step, the WHO Executive Board will discuss the content of a WHO report covering this subject in January 2003. The report is being developed in collaboration with other key organizations, notably FAO and the United Nations Environment Programme (UNEP). It is hoped that this report could form the basis for a future initiative towards a more systematic, coordinated, multi-organizational and international evaluation of certain GM foods.


Courtesy : Anna Kopecky via Youtube, BBC, WHO

Story : 55 Fiction : Cartoons Never Die

Cartoons Never DieHe was cheering Jerry to escape the chasing Tom, glued his eyes.

His sister wasn’t fighting over the TV remote. She remained silent, so did the others.

He smiled for one last time. Tears filled their eyes.

HIV was not his fault.

The doctor answered “Yes” to the question he asked once “Cartoons never die?”

- Din

Blank Space inviteDo you write short stories? Now it’s time to get published and inspire the world. Know more about Blank Space where you can submit your short stories for free for publishing. Drop a mail to publish@propelsteps.com for registering and more details.